Infectious Disease Definitions

- **Infection** – when a microorganism invades a host and multiplies enough to disrupt normal function by causing signs and symptoms
- **Pathogenicity** – ability of an organism to cause disease
- **Incubation period** – time immediately before the onset of acute disease (1 to 2 days)
- **Acute phase** – most severe signs and symptoms of disease occur
- **Convalescence phase** – signs and symptoms are receding and person is returning to normal health
- **Convalescent titers** - antibody level drawn weeks after symptoms appear

Infectious Diseases

- Infectious Mononucleosis (IM)
- Hepatitis
- Rubella
- Cytomegalovirus (CMV)
- Human Immunodeficiency Virus (HIV)

EBV and Infectious Mononucleosis
Etiology of Infectious Mononucleosis (IM)

- Caused by the DNA Epstein Barr virus (EBV)
- Part of the herpes virus group
- Disorder is an acute, benign, and self-limiting lymphoproliferative condition
- Once infected, a lifelong carrier state develops whereby a low grade infection is kept in check by the immune defenses.
- EBV infections complications can involve:
 - Cardiac, ocular, respiratory, hematologic, digestive, renal and neurologic system

Epidemiology of IM

- Reactive (atypical, variant) lymphs seen in peripheral blood smear are T Lymphs
- Viral genome persists in B lymph and epithelial cells of oropharynx
- Transmitted primarily by contact with oral-pharyngeal secretions - salvia (kissing disease)
- After primary exposure a person is considered to be immune

Signs and Symptoms of IM

- Seroconvert without any significant clinical signs and symptoms of disease
- In children under 5, infection is either asymptomatic or frequently characterized by mild, poorly defined signs and symptoms
- Incubation period 10 – 50 days
- Extreme fatigue, sore throat, malaise, fever, cervical lymphadenopathy
Signs and Symptoms of IM

- Splenomegaly 50% of cases
- Jaundice is infrequent, although the most common complication is hepatitis
 - Abnormal liver function test: elevated liver enzymes (AST, ALT, possibly GGT, elevated bilirubin)
- Significant number of cases do not manifest classic signs and symptoms: most common sign – fatigue.

Diseases associated with Epstein-Barr Virus (EBV)

- **Burkitt’s lymphoma**: a malignant neoplasm of B lymphs
 - Found in children or immunocompromised
- **Nasopharyngeal carcinoma**: squamous cell carcinoma is caused by EBV and found mainly in southern China
- Other assoc.: Neoplasms of thymus, parotid gland, and supraglottic larynx
- Neurologic syndromes include: Bell’s palsy, Guillain-Barre syndrome, meningocerebralitis, Reye’s syndrome, myelitis, cranial nerve neuritis, and psychotic disorders
- **Infectious mononucleosis**
 - 95% of the world’s population is exposed to the virus, which makes it the most ubiquitous virus known to humans.

Serological Tests for IM

- Heterophile Antibody Assay:
 - Nonspecific agglutination assay
 - Screening tests:
 - Paul-Bunnell screening test
 - Davidson Differential Assay
- EBV-Specific Antibody Assay:
 - Identification of Ab produced against specific EBV antigens.
Immunologic Manifestations

- EBV induces the production of heterophile antibodies

- **Heterophile antibodies**: antibodies that are stimulated by one antigen and react with an entirely unrelated surface antigen present on cells from different mammalian species
 - Present in normal individuals in low titer (<56)
 - Such causes are due to febrile agglutinins

Immunologic Manifestations

- **Three** types of heterophile antibodies distinguished in IM testing:
 - Antibodies against Forssman antigens.
 - Serum sickness Antibodies
 - IgM Heterophile Antibodies to Infectious mononucleosis (EBV) antigens

Immunologic Manifestations

- **1. Forssman antigen**: In 1911, Forssman revealed that emulsions of guinea pig organs injected into rabbits provoked the formation of antibodies that lysed sheep RBCs in the presence of complement – **Forssman antigen**
 - found on RBCs of: horse, sheep, dog, cat, mouse, fowl, guinea pig, some bacteria
 - Absent from: humans, monkeys, rabbits, rats, ducks, cows

- Forssman heterophile antibodies can cross react in experiments testing for IM causing False Positive IM results.
Immunologic Manifestations

- 2. Serum sickness
 - Hypersensitivity reaction following a single, large injection of serum from an animal of another species
 - Historically observed after administration of antitoxin containing foreign serum such as antitetanus or antipertussis serum which were made from horse.
 - The immune system recognizes the horse serum as foreign and is activated to produce antibodies against it.
 - Heterophile antibodies result from sensitization to animal serum (usually horse)
 - Serum Sickness heterophile antibodies can cross react in experiments testing for IM causing False Positive IM results.

- 3. IM (IgM) heterophile antibody: After being infected with EBV, the immune system is activated to produce IgM IM heterophile antibodies against the virus.
 - IM antibodies are characterized by the following features:
 - Reacts with horse, ox and sheep RBCs = agglutination
 - Is absorbed by beef RBCs = No agglutination
 - NOT absorbed by guinea pig kidney cells (agglutinates with)
 - Does NOT react with EBV-specific antigens (no agglutination)

Paul and Bunnell Screening Test

- (1932) - Recognized that heterophile antibodies developed in patients suffering from IM
- The antibodies were found to agglutinate sheep RBCs and ox RBCs but NOT guinea pig kidney therefore, NOT of the Forssman type
- IgM agglutinins observed within 2 weeks after development of symptoms
- Last 4 – 8 weeks
- Maximum titer at 2 – 3 weeks
- Titer DOES NOT correlate with severity of disease
Paul and Bunnell Screening Test

- IM heterophile Ab only appear in 50 – 80% of cases of IM, therefore negative test DOES NOT rule out possible infection
- Hemagglutination test to detect heterophile antibodies
- Dilutions of inactivated patient serum are mixed with sheep RBCs. Inactivated serum is required for this experiment in order to prevent complement from lyse the cells.
 - Improperly inactivated serum will produce hemolysis
 - Inactivate complement by heating diluted samples to 56 degrees
- Positive agglutination with a titer ≥ 56 is clinically significant and considered PRESUMPTIVE evidence of infection with EBV
 - False Positive Results: due to Antigens on sheep RBCs can also be agglutinated by Forssman and serum sickness antibodies
 - Patient is only SUSPECTED of having Infectious Mononucleosis.

False-positives are also observed with hepatitis infections and Hodgkin’s disease

Advantages: Simple, inexpensive

Disadvantages: lacks sensitivity

Only a screening test

Not specific, only indicates the presence or absence of heterophile antibodies

Davidsohn Differential Test

- (1937) - Modified Paul-Bunnell test with an absorption step to remove cross-reacting antibodies (Forssman and serum sickness heterophile Ab) since sheep RBCs react with all three types
 - This procedure removes the Forssman and Serum Sickness Ab to determine if the IM heterophile Abs are present.
- Perform when the Paul-Bunnell titer is ≥ 1:56.
- Distinguishes between the three types of heterophile antibodies
- Cells used in Test: Sheep and beef (ox) RBCs bear some common antigens that are not present on the kidney cells of guinea pigs
- Davidson Differential: Two assays are performed and compared to determine Infectious Mononucleosis.
Davidsohn Differential Test

Assay #1:
1. Guinea pig kidney cells are rich in Forssman antigen
 - When mixed with patient serum, GP cells will ABSORB the Forssman heterophile antibodies out of the patient serum.
2. Then absorbed serum is incubated with sheep RBCs:
 - At this point, ALL Forsman Ab have been absorbed out of the serum; the only heterophile Ab left should be IM Ab:
 - If the sheep RBCs DO NOT agglutinate, No IM antibodies are present
 (No agglutination = No IM antibodies)
 - If the absorbed serum agglutinates the sheep RBCs, then the heterophile antibodies ARE of the IM type
 (Agglutination = IM antibodies)

Assay #2:
1. Bovine RBCs are contain antigens that will absorb out IM heterophile Abs from the patient serum.
 1. Then absorbed serum is incubated with sheep RBCs:
 - At this point, ALL IM heterophile Abs have been absorbed out of the serum; the only heterophile Ab left should be the Forssman Abs:
 - If the sheep RBCs DO NOT agglutinate, IM antibodies ARE possibly present. Need to compare with results from Assay #1 to confirm.
 (No agglutination = IM antibodies)
 - If the absorbed serum agglutinates the sheep RBCs, heterophile Ab ARE NOT IM antibodies.
 (Agglutination = NOT IM antibodies)

Test:

<table>
<thead>
<tr>
<th>Test</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay #1</td>
<td>Add Sheep RBCs</td>
</tr>
<tr>
<td>IM Ag + Serum</td>
<td>1+</td>
</tr>
<tr>
<td>Beef RBCs</td>
<td>1+</td>
</tr>
<tr>
<td>Assay #2</td>
<td>Add Sheep RBCs</td>
</tr>
<tr>
<td>IM Ag + Serum</td>
<td>1+</td>
</tr>
<tr>
<td>Beef RBCs</td>
<td>1+</td>
</tr>
</tbody>
</table>

Interpretation:

- **POSITIVE IM Result:**
 - (+) = agglutination
 - (-) = no agglutination

- **NEGATIVE IM Result:**
 - (+) = agglutination
 - (-) = no agglutination

- Agg. with both Assays = you need to dilute the sample & repeat
- No agglutination with both Assays = Neither IM heterophiles or Forssman Ab are present; Interpretation: Possible Serum Sickness
Davidsohn Differential Test

Interpretation of Differential Patterns

<table>
<thead>
<tr>
<th>Paul-Bunnell Test (Titer)</th>
<th>Davidsohn Differential</th>
<th>Beef erythrocytes</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 16</td>
<td>(+) Agglutination</td>
<td>(-) No agglutination</td>
<td>Infectious Mononucleosis (IM) antibody</td>
</tr>
<tr>
<td>≥ 16</td>
<td>(-) No agglutination</td>
<td>(+) Agglutination</td>
<td>Forssman antibody</td>
</tr>
<tr>
<td>≥ 16</td>
<td>(-) No agglutination</td>
<td>(-) No agglutination</td>
<td>Serum Sickness</td>
</tr>
<tr>
<td>≤ 16</td>
<td>(-) No agglutination</td>
<td>(-) No agglutination</td>
<td>Negative for Heterophile antibodies</td>
</tr>
<tr>
<td>≤ 16</td>
<td>(+) Agglutination</td>
<td>(+) Agglutination</td>
<td>Dilute the sample & repeat</td>
</tr>
</tbody>
</table>

EBV-Specific Ab Assays

- In diagnostically inconclusive cases of IM, a more definitive assessment of immune status may be obtained through an EBV serologic Ab panel

- Candidates for EBV serology include those who:
 - Do not exhibit classic symptoms for IM
 - Are heterophile negative
 - Are immunosuppressed

- EBV infected B lymphs express a variety of “new” antigens encoded by the virus
 - VCA – viral capsid antigen
 - EA – early antigen
 - EBNA – nuclear antigen

 - All of the above can elicit an antibody response.
 - Assays are available for IgM and IgG antibodies to these EBV antigens.
EBV-Specific Ab Assays

- **Onset of symptoms:** Anti-VCA IgM, disappears in 3 mo.; Anti-VCA IgG, persists for life.
- **Acute infection:** anti-VCA IgM, anti-VCA IgG, anti-EA.
- **Present during convalescence:** Anti-VCA IgG, Anti-EBNA
- **Past infection:** anti-EBNA, anti-VCA IgG, neg anti-VCA IgM.

EBV-Specific Ab Assays

![Graph showing antibody response over time]

Epstein-Barr Virus Serology

- **VCA:**
 - Found in the cytoplasm of B cells
 - Anti-VCA IgM is usually detectable early in the course of infection – disappears within 2-4 months
 - Anti-VCA IgG detectable within 4-7 days after onset of signs and symptoms – persists for an extended amount of time, perhaps lifelong
Epstein-Barr Virus Serology

- **EA (Early Antigen)**
 - Made of two components:
 - **EA-D** (early antigen-diffuse) found in nucleus and cytoplasm of B cells
 - Anti-EA-D IgG is highly indicative of acute infection
 - **EA-R** (early antigen-restricted) found in cytoplasm of B cells
 - Anti-EA-R IgG is not usually found in young adults during acute phase, but it is sometimes demonstrated in the serum of very young children during the acute phase

Epstein-Barr Virus Serology

- **EBNA (Epstein-Barr Nuclear Antigen)**
 - Found in nucleus of all EBV-infected cells
 - EBVNA does not become available for Ab stimulation until after the incubation period of IM.
 - Activated T-lymphs destroy the EBV-infected B cells, as a result:
 - antibodies to NA are **absent** or barely detectable during acute IM infections

Hematologic Studies

- 66% pt. WBC = 10 – 20,000/mm³
- 10% pt. Leukopenia
- Relative lymphocytosis: with 5 – 55% variant or atypical/reactive lymphs that persists for 1 – 6 months
<table>
<thead>
<tr>
<th>Hematologic Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Lymph</td>
</tr>
</tbody>
</table>

![Images of Normal and Atypical Lymphs]